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Alzheimer’s is an acute degenerative disease a�ecting the elderly population

all over the world. The detection of disease at an early stage in the absence

of a large-scale annotated dataset is crucial to the clinical treatment for the

prevention and early detection of Alzheimer’s disease (AD). In this study, we

propose a transfer learning base approach to classify various stages of AD.

The proposed model can distinguish between normal control (NC), early mild

cognitive impairment (EMCI), late mild cognitive impairment (LMCI), and AD.

In this regard, we apply tissue segmentation to extract the gray matter from

the MRI scans obtained from the Alzheimer’s Disease National Initiative (ADNI)

database. We utilize this gray matter to tune the pre-trained VGG architecture

while freezing the features of the ImageNet database. It is achieved through the

addition of a layer with step-wise freezing of the existing blocks in the network.

It not only assists transfer learning but also contributes to learning new features

e�ciently. Extensive experiments are conducted and results demonstrate the

superiority of the proposed approach.
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1. Introduction

Alzheimer’s is one of the most crucial causes of dementia

all over the world. Several neurological illnesses, including

dementia, afflict a sizable portion of the global population.

Patients with Alzheimer show more clear symptoms after the

age of 60. However, in some cases, as a result of some gene

abnormalities, the symptoms may start to show up at a young

age (30–50). Alzheimer’s gives rise to functional and structural

changes in the brain (Hampel et al., 2021). The progression of

Alzheimer’s disease (AD) from normal control (NC) spans over

a number of years with some intermediate stages ranging from

the development of early mild cognitive impairment (EMCI) to

late mild cognitive impairment (LMCI). These changes can be

observed through MRI images and blood plasma spectroscopy

(Pan et al., 2020; Palmer et al., 2021).

Visualizing theMRI scans can somehow allow the physicians

to detect the contraction of the gray matter. However, it is a

complex process to detect these changes manually. Machine

learning-based techniques for the classifications, such as support

vector machines (SVMs), artificial neural networks (ANNs), and

deep learning-based convolutional neural networks (CNNs),

remained very useful in the detection of these minor tissue-

level changes (Mehmood et al., 2021). It is important to note

that SVM and ANN give local and global optimization-based

solutions. However, deep learning-based CNNs consider the

feature extraction and learning in the model itself and are

considered to be more useful in medical image analysis (Pan

et al., 2020; Cheng et al., 2022). But these methods are data-

hungry and demand large-scale training datasets to learn the

task (i.e., classification in this case) from scratch (Chen et al.,

2022; Khan et al., 2022).

Recent advancements in imaging technology, including

computerized axial tomography (CT), magnetic resonance

images (MRI), and positron emission tomography (PET)

(Masdeu et al., 2005; Han et al., 2022) images, have

revolutionized the detection of Alzheimer’s. Due to ionization

effects and cost and computational complexity, gathering a

large-scale data set for a particular task is very challenging. The

3D MRI images produced through high-dimensional diagnostic

equipment contain several images in a single voxel. These voxels

can help to diagnose Alzheimer’s at an early stage (Zhang et al.,

2019).

A deep Siamese convolution neural network (SCNN) for

the multiclass classification of AD is proposed by Mehmood

et al. (2020). A natural image-based network to represent

neuroimaging data (NIBR-Net) is another significant approach

in the target domain, based on a sparse autoencoder (Gupta

et al., 2013), where the network learns from a set of bases from

natural images with the help of convolution to extract features

from the Alzheimer’s Disease Neuroimaging Initiative (ADNI)

dataset. This method selects the useful features in a single

hierarchy while iteratively filtering the undesirable features.

Considering the multiple classes of Alzheimer a deep learning-

based multiclass classifier is proposed by Farooq et al. (2017).

Apart from this, several computer-aided techniques have been

suggested for diagnosing AD, especially in the case of severe

dementia (Petot and Friedland, 2004; Acharya et al., 2021).

Similarly, the issue of the imbalance of class data is handled by

Murugan et al. (2021) with the help of a deep DEMNET by using

the pre-processed dataset.

Training a neural network with a small-scale dataset (i.e.,

MRIs) with a higher prediction rate and a higher accuracy

is a great challenge. In this study, we propose to utilize the

pre-trained VGG16 and VGG19 models to predict NC, EMCI,

LMCI, and AD.We extract the gray matter (GM) from the brain

MRIs because using entire voxels or raw data directly to train

neural networks also presents data management. We applied

skull striping and tissue segmentation operations to segregate

the full brain MRIs. Considering the data-hungry nature of

the neural networks, we proposed to apply data augmentation

to the extracted GM slices. It also resolves the challenges of

overfitting, which is often aroused due to the unavailability of

large-scale dataset. In addition, we step-wise freeze the blocks

and add layers to transfer the features for accurate predictions

on four classes of the input data, i.e., NC, EMCI, LMCI, and AD.

Thus, we resolve the challenges of prospective fluctuations and

imbalanced data size and class variation problems. The overall

experimental evaluations and comparison with several state-

of-the-art approaches demonstrate that the proposed transfer

learning method outperformed the extant techniques, making it

more suitable for future interactive Alzheimer’s applications.

2. Related work

The fundamental causes of Alzheimer’s are still unknown,

and it is believed to be genetic (Adami et al., 2018). Alzheimer’s

affects a number of social cognitive capacities and results

in several neurological conditions that are memory-related

(Ramzan et al., 2020). According to an estimate, by the year

2050, 131.5 million individuals will be globally affected by

Alzheimer’s disease (AD) (Prince et al., 2015). It will become the

top cause of death for older people as the number of patients

grows daily. High-dimensional data from imaging modalities

like MRI, fMRI, PET, amyloid-PET, diffusion tensor imaging,

and neurological tests are essential parts of the existing strategies

for the diagnosis (Tanveer et al., 2020; Afzal et al., 2021).

However, differentiating between the patterns with radiological

readings is still quite a difficult task due to the complexity of the

minute patterns. As a result, it is difficult to establish an early

diagnosis of Alzheimer’s. Recently, several deep learning and

machine learning-based techniques to enhance picture quality

have been presented (Khan et al., 2019; Alenezi and Santosh,
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2021). Additionally, the feature extraction- and classification-

based approaches can be regularly employed to create prediction

models for applications based on intelligent and expert systems

(Mehmood et al., 2021; Shams et al., 2021; El-Hasnony et al.,

2022).

The progression of Alzheimer’s took several years, ranging

from NC to MCI and AD. The development of MCI is also

considered as early and late MCI (Sperling et al., 2011; Huang

et al., 2018). It is imperative to diagnose the disease at an early

stage, which is only possible through an accurate classification

of various stages of disease (Khan et al., 2022). The recent

developments in machine learning and deep learning-based

methods can significantly contribute to the target domain

(Tanveer et al., 2020). The extraction of the feature and

identification of these features based on these techniques can

ease the burden on the healthcare system (Razzak et al.,

2022). The main objective of the binary class and multi-class

classification is to distinguish the features of normal images

from impaired images to detect the stage of the disease. Support

vector machines (SVM), K-nearest neighbors (KNNs), fuzzy

learning, decision trees, random forests, and dimensionality

reduction algorithms, like principal component analysis, are

readily used methods in traditional machine learning research

(Vecchio et al., 2020). The feature extraction through CNNs

and deployment of CNNs have revolutionized the whole process

(Bi et al., 2020; Liang and Gu, 2021) and can yield acceptable

results for the early detection of AD. CNN-based methods

can adeptly learn the input images’ features to identify a

particular disease stage. Hao et al. (2020) suggested a multi-

modal framework to extract neurological information from the

MRIs in order to classify the various phases of dementia. In order

to classify AD, NC, andMCI, Tong et al. developed amultimodal

classification framework based on MRI, FDG, and PET scans

(Tong et al., 2017). Other recent approaches for the classification

of Alzheimer’s (Tajbakhsh et al., 2016; Jain et al., 2019; Khan

et al., 2019, 2022) can somehow resolve the challenges and some

other tries to introduce some transfer learning based approaches

(Afzal et al., 2021; Mehmood et al., 2021). However, it is still

challenging to extract accurate features to distinguish the images

and diagnose the disease at an early stage.

Considering the MRIs, a multi-modal framework is

proposed to extract neurological features for the classification

of various stages of dementia (Hao et al., 2020). Tong et al.

proposed a multimodal classification for AD based on MRI,

FDG, and PET images to classify AD, NC, and MCI. A multi-

modal learning-based network (Liu et al., 2014) based on

PET, and MRI images, a multi-modal stack-net (Shi et al.,

2017), and a similarity matrix-based method are proposed by

Zhu et al. (2014) based PET, CSF, and MRI biomarkers to

distinguish various stages of AD. Some methods rely on the

extraction of 2D slices, and some others utilize the whole

voxel to distinguish several categories of disease (Payan and

Montana, 2015; Islam and Zhang, 2018). A 3D deeply supervised

adaptable convolutional neural network (CNN-3D) is proposed

by Hosseini-Asl et al. (2018) to predict AD without relying

on skull striping with generic feature learning through bio-

markers. However, the data management challenges are still

complex when handling medical images. In the case of the target

problem gathering, a large-scale dataset is a great challenge as

compared to ordinary computer vision and image processing

tasks as we know that deep learning-based models are data-

hungry and demand a large-scale dataset. Therefore, transfer

learning approaches (Aderghal et al., 2018; Li et al., 2018; Basaia

et al., 2019) are preferred, which utilize the weights from the

pretrained models on the large scale datasets such as ImageNet

(Mehmood et al., 2021).

To categorize the various stages of the disease with transfer

learning, a deep Siamese convolution neural network (SCNN)

for the multiclass classification of AD is proposed by Mehmood

et al. (2020). A natural image-based network to represent

neuroimaging data (NIBR-Net) is another significant approach

in the target domain, based on sparse autoencoder (Gupta et al.,

2013), where the network learns from a set of bases from natural

images with the help of convolution to extract features from

the ADNI dataset. A sparse multi-tasking deep learning-based

method is proposed by Suk et al. (2016) with a feature adaptive

weighting system. This method selects the useful features in

a single hierarchy while iteratively filtering the undesirable

features. Considering the multiple classes of Alzheimer, a deep

learning-based multiclass classifier is proposed by Farooq et al.

(2017). Apart from this, several computer-aided techniques have

been suggested for diagnosing AD, especially in the case of

severe dementia (Petot and Friedland, 2004). These models

can assist the physicians in combination with computer-aided

intelligent and expert systems (Jo et al., 2019) In this article, we

proposed a multi-class classification network by using transfer

learning through VGG architecture. We applied a step-wise

block freezing strategy to the VGG-16 and VGG-19 models

with some additional layers. The proposed method achieves

higher accuracy and is capable of working with a small-scale

dataset. The overall experimental evaluations demonstrate the

superiority of the proposed method as compared to the state-of-

the-art approaches.

3. The proposed methodology

In this study, we proposed a transfer learning-based multi-

class classification for the early diagnosis of AD. The patients’

data in this study was obtained from the ADNI database. We

gathered 315-T1 weighted MRI images of four classes: NC,

EMCI, LMCI, and AD. The processing overview of these images

is shown in Figure 1. We extracted the gray matter through

these 3D voxels and utilize these GM slices to train VGG

architectures, as shown in Figure 2. We utilized the weights
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FIGURE 1

Overview of the proposed framework for processing data and training in the network for classification.

from the pre-trained network on ImageNet and adopted a layer-

wise transfer learning while step-wise freezing the blocks. The

proposed framework successfully classifies various stages of AD

and yields significant results by using only a small-scale dataset.

3.1. Datasets and pre-processing on data

The magnetic resonance imaging technology is continually

being improved and developed by researchers, and it has

revolutionized the way neurological disorders are discovered

and diagnosed. Whereas, the inconsistent intensity scale of

the image makes it difficult to visualize and evaluate the data

manually (Lundervold and Lundervold, 2019). It is essential

to provide the correct information during learning if learning-

based technologies are to produce accurate predictions. Thus,

data preprocessing is a crucial step to manage to increase the

contrast and pixel intensity. We applied several pre-processing

operations on the available MRI scans of several patients

obtained from the ADNI data repository. The specification

of the dataset utilized in this work is shown in Table 1. A

different number of subjects are selected to handle the class

imbalance problem. We mainly exclude the opening and closing

slices of the MRI due to the limited information contained in

these slices. Images (i.e., 3D MRI scans) obtained from ADNI

are available in neuroimaging informatics technology initiative

(NIFTI) format. We pre-process these images by utilizing the

statistical parametric mapping tool (SPM12) for the tissue-wise

segmentation of the input into gray matter, white matter, and

cerebrospinal fluid (CSF). We perform several operations (i.e.,

skull striping, registration, normalization, and segmentation) to

extract the 2D-MRI PNG images from the available MRI scans.

In this study, we focused only on the gray-matter slices

to detect the memory loss changes in early AD detection. We

consider the ICBM space template for affine regularization and

a bias regularization of 1e−3 with a full bias width at half

maximum of 60mm cutoff. Once these prepossessing operations

are complete, we resize all the images to a size of 224× 224.

These images are suitable for training and testing and analogous

to the size of ImageNet. The subjects involved in this dataset
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FIGURE 2

Overview of the proposed framework with step-wise block (B) representation as B-I to B-V. The left side shows VGG 16, and the right side shows

the VGG 19 model with the proposed layer-wise transfer learning in both networks, blocks are frozen from B-I to B-V alternatively.

TABLE 1 Sample size of the dataset with specifications and number of

subjects utilized for each class.

Type Subjects Age MMSE Slices

NC 75 73± 8.5 26.5± 1.4 4637

EMCI 75 74± 7.7 29.5± 1.2 1882

LMCI 80 72± 7.9 28.5± 1.6 4558

AD 85 75± 9.5 24.5± 1.9 3349

are scanned with respect to different durations of visits of the

patients. Every scan is a different subject and contains the

GM, WM, and CSF slices; of which, GM slices are fed to the

network to interpret the usable information extracted through

MRI volumes. In this regard, we split our dataset into training

(70%), testing (15%), and validation data (15%).

4. Neural networks and transfer
learning framework

Convolutional neural networks perform convolutional

operations to extract the features from the input data. These

features are learned during the training process. Later on,

the network’s prediction behavior determines the network’s
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learning quality. In artificial intelligence (AI), CNNs are

distinguished from the other type of networks due to the

superior performance of these networks in the multiple-image

processing and visualization domains. The main type of layers in

these networks are convolutional layers. These are the first layers

that extract the features which are pooled with pooling layers.

Finally, the fully connected layers are applied. Considering the

recent advancements in AI and neural networks for feature

extraction and associated task, we employed VGG 19 and VGG

16 architecture with a transfer learning approach for the target

problem.

Transfer learning is a method for developing a predictive

model for a separate but related problem that can then be

utilized partially or entirely to speed up training and ultimately

enhance the model’s performance for the problem. It involves

applying a previously trained model to new problems. Transfer

learning-based techniques are now very popular in the field

of medical image processing. Considering the advantages of

automatic feature extraction and identification with the help of

a pre-trained model have proved to be very useful in the target

domain. Using a pre-trained model saves the time and effort of

building a new model from scratch. It is also difficult to train

a substantially large-scale network without amassing millions

of annotated images. Therefore, using the pre-trained weights

of a network with precise tuning on fresh data is a distinct

and advantageous approach. Two models adopted in this study

for transfer learning are pre-trained on the ImageNet database

comprising millions of images.

The existing models, for example, Inception-Net with

23.62 million parameters, Xception-Net with 22.85 million,

and ResNet with 23 million parameters, can also be used

for transfer learning. However, considering the importance

of the target problem, we selected VGG architecture with

138 million parameters. Feature transfer can be problematic

in particular circumstances, such as when the datasets are

small or imbalanced. Because transfer learning will not be

effective if the final classification layer’s characteristics are

insufficient to distinguish the classes for a particular problem.

Thus if the datasets are not comparable, the feature will hardly

be transferred. We present transfer learning results in two

categories, i.e., VGG 16 and VGG 19. Thus in each case, we

propose to freeze some of the blocks in the network while

freezing some fully connected layers.

5. VGG model with proposed
transfer learning and experimental
evaluations

The pretrained VGG-16 and VGG-19 models utilized in

this study are trained on the ImageNet database. We consider

freezing the weights and leveraging a pretrained convolutional

base. We also include fully connected classification layers to

transform the network for our multi-class classification task.

The first layer in the model learn feature extraction. The initial

layers learn to extract the generic features, and the final layers

learn the target-oriented features. We added the new fully

connected dense layers and performed several experiments with

the rectified linear unit (ReLU) activation function. The main

objective of the activation function is to induce non-linearity in

the data. It can be expressed for an input value (v) as below.

ReLU(v) = max(0, v) (1)

ReLU(x) =







0, if v <0

x, if v ≥ 0
(2)

The final layers in both of the models (i.e., VGG 16 and

VGG 19) use the Softmax function. The number of neurons is

reduced to 4 due to four classes (i.e., NC, EMCI, LMCI, and AD)

in the target problem. The softmax function is the generalization

of logistic regression, which is utilized in the classification of

mutually exclusive classes. It converts the values to a normalized

probability distribution of input for user display. Therefore, it

is utilized at the final layer of the network and expressed as σ

for input vector vi and standard exponential e followed by a

normalization factor with a summation
∑

at the bottom for the

K number of classes in the multiclass classifier.

σ (v
−→
) i =

evi
∑k

j=1 e
vj

(3)

The loss function utilized in this regard is categorical

cross-entropy loss which exponentially penalizes error in the

probability prediction. The target problem involves predictions

for more than one class, i.e., NC, EMCI, LMCI, and AD,

and involves 4 labels. Therefore, loss function for the network

also varies accordingly, and we consider categorical cross-

entropy loss for these multiple-class classification problems. The

categorical cross-entropy loss with pi probabilities for i
th labels

with truth values ti, for the N number of classes is expressed

as LCrE.

LCrE =

n
∑

N=1

n(size)
∑

i=1

tilog(pi) (4)

Our goal is to reduce the loss as much as possible. In each

case, the cross-entropy for the i number of classes was estimated

for the dementia’s di, where i = 1....5 in this case. The probability

of the output y for each class can be estimated for dementia,

where the cross-entropy for each category NC, EMCI, LMCI,

and AD is CENC , CEEMCI , CELMCI , and CEAD, respectively.
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5.1. Experiments and evaluation metrics

We categorize our experiments based on VGG 16 and VGG

19 models. In each category, we perform several experiments.

The overall performance is measured in terms of confusion

matrices (Deng et al., 2016) where true positives (TP), true

negatives (TN), false positives (FP), and false negatives (FN)

give an overview of the accuracy, specificity, sensitivity, and

precision. We also measure f1-score in addition to accuracy,

specificity, sensitivity, and precision. Each column in the

confusion matrix is a visual tool to understand the predicted

score, where columns and rows show the true and predicted

labels, respectively.

5.2. Evaluation metrics

In order to evaluate the performance of the proposed

framework, the confusion matrix consists of TP, FP, TN,

and FN. Thus, an overview of the confusion matrix gives

a comprehensive overview of the F1-score, specificity (Sp),

sensitivity (Se), accuracy (Ac), and precision (Pr) value because

all of these metrics follow TP, TN, FP, and FN. Witten and

Frank (2002). The mathematical expressions below depict this

relationship explicitly.

5.2.1. Positive predictive value

The positive predictive value is called the precision and

shows the portion of real positive cases.

Pr =
TP

TP + FP
(5)

5.2.2. Sensitivity

Sensitivity is the recall value that shows the actual positive

and the correctly predicted portion of values. This metric reflects

correctly anticipated cases and depicts the coverage of real

positive cases, also termed the true positive rate (TPR).

Se =
TP

TP + FN
(6)

5.2.3. Specificity

Specificity is associated with the likelihood of a negative test

rate in the absence of the condition and is considered a true

negative rate.

Sp =
TN

TN + FP
(7)

5.2.4. Accuracy

Classification accuracy is a statistical measurement that

evaluates the performance of a classification model by dividing

the number of correct predictions by the total number of

predictions.

Ac =
TP + TN

TP + FN + TN + FP
(8)

5.2.5. F1 measurement

The F-Metric is a method for combining accuracy and recall

into a single measure that encompasses both and is widely

utilized in classification tasks.

F1−Measure =
TP

TP +
1
2 (FP + FN)

(9)

In addition, we also present graphical and numeric results in

terms of accuracy for each class.

5.3. Experimental settings and results

Experimental results for precision, accuracy, and F1 score of

VGG 16 and VGG 19 (with and without data augmentation) are

presented in the Table 2. In this table, we show the results for NC,

EMCI, LMCI, and AD, respectively. The overall performance of

the network with and without data augmentation is also shown

in this table. The average accuracy of VGG 16 with and without

data augmentation for all four classes is 96.39%. Similarly,

the average accuracy of the VGG 19 with and without data

augmentation for all four classes is 96.81%. This comparison

demonstrates that VGG 19 performs slightly better than VGG

16. We also demonstrate the fact with the help of box plots

shown in Figure 3. The results are shown for VGG 16 and

VGG 19 with data augmentation (WDA) and without data

augmentation (WODA).

The proposed framework’s overall performance is much

better compared to the existing methods. To demonstrate

the fact we present the comparison of the proposed method

with several state-of-the-art approaches. The results of this

comparison are shown in Table 3. In addition, we also compare

the performance of the proposed framework with other state-

of-the-art models, including DenseNet, Inception ResNet V2,

AlexNet, Inception V3, ResNet101, and ResNet50. The results

for comparison of these methods with the proposed framework

are shown in Table 4. This table shows that the proposed

framework (i.e., VGG19+ALFB, VGG16+ALFB) outperformed

the other models. To demonstrate the performance of our

method with respect to the existing state-of-the-art approaches,

we provide a comprehensive comparison with several methods.

The competitor approaches include a deep sparse multi-task

learning for feature selection in the diagnosis of AD (DSMAD-

Net) (Suk et al., 2016), CNN-expedited (Wang et al., 2017)
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TABLE 2 The comparison of the evaluation metrics in terms of precision, accuracy, and F1 score for VGG16 and VGG19 with and without data

augmentation.

Model VGG16 (Without DA) VGG16 (With DA)

Metrics Precision Accuracy F1 Score Precision Accuracy F1 Score

NC 91.71 99.20 95.30 97.65 99.40 98.51

EMCI 99.60 90.07 93.61 99.22 91.13 95

LMCI 96.06 99.85 97.91 96.46 99.70 96.02

AD 99.38 93.52 96.36 99.56 98.27 98.91

Model VGG16 (Without DA) VGG16 (With DA)

Metrics Precision Accuracy F1 Score Precision Accuracy F1 Score

NC 97.65 97.41 96.82 97.27 99.80 98.51

EMCI 99.22 86.52 92.43 100 99.09 99.54

LMCI 96.46 99.41 97.91 98.41 100 99.19

AD 99.56 97.26 98.39 99.85 97.98 98.90

FIGURE 3

The comparison of the accuracy of the proposed frameworks with data augmentation (WDA) and without data augmentation (WODA).

classification of AD on imaging modalities (CAIM) (Aderghal

et al., 2018), a transfer learning approach for the early diagnosis

of AD on MRI image (TLEDA-Net) (Mehmood et al., 2021),

multi-domain transfer learning (TL), a matrix similarity-based

method (Zhu et al., 2014), multimodal learning (Liu et al., 2014),

multimodal stacked Net (Shi et al., 2017), shape-attributes of

brain structures as biomarkers for AD (SABS-AD) (Glozman

et al., 2017), detecting AD on small dataset (Li et al., 2018),

multimodal neuroimaging feature learning with multimodal

stacked deep polynomial networks for diagnosis of AD

(MMSPN-AD) (Basaia et al., 2019), multimodal classification

of AD diagnosis (MMC-AD) (Tong et al., 2017), predicting

AD with a 3D neural network (3D-CNN-PAD) (Payan and

Montana, 2015), natural image bases to represent neuroimaging

data (NIBR-Net) (Gupta et al., 2013), a differential diagnosis

strategy (Sørensen et al., 2017), a transfer learning bases method

(Naz et al., 2022), a convolutional neural networks-based MRI

image analysis for the AD prediction from MCI (Lin et al.,

2018), and a novel end-to-end hybrid network for AD detection

using 3D CNN and 3D CLSTM (Xia et al., 2020). We performed

several experiments, while the freezing pre-trained base and

step-wise tested the performance for several blocks in VGG 16

and VGG 19. We include additional layers (ADL) and perform

experiments with a block-freezing strategy. We independently

present the results of the effects of the proposed changes on

VGG16 and VGG19.

The results for the training loss and test accuracy with

additional layers and frozen blocks in the VGG16 model

is shown in Figure 4. The resulting confusion matrices to

evaluate the network’s performance in terms of true and

predicted labels are shown in Figure 5. The confusion matrices

are shown for (Figure 5A) without data augmentation and
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TABLE 3 Comparison of the accuracy of the various state-of-the-art approaches with the proposed work.

References Methods Modalities Distinction Data Accuracy (%)

Tong et al. (2017) MMC-AD MRI, FDG-PET AD, NC, MCI ADNI 72.9

Wang et al. (2017) CNN-Expedited MRI NC, MCI OASIS 90.6

Payan and

Montana (2015)

3D-CNN-PAD MRI NC, MCI, AD ADNI 85.3

Gupta et al. (2013) NIBR-Net MRI NC, MCI, AD ADNI 78.2

Cheng et al. (2017) Multi-Domain TL MRI NC, MCI ADNI 94.7

Sørensen et al.

(2017)

Differential Diagnosis sMRI+Volumetry

HS+CT

MCI & AD ADNI & AIBL 62.7

Zhu et al. (2014) Matrix-Similarity MRI+PET, CSF MCI converter, MCI-NC, AD ADNI 72.6

Liu et al. (2014) Multimodal learning MRI+PET AD, NC, MCI ADNI 53.8

Suk et al. (2016) DSMAD-Net MRI+PET NC, MCI, AD ADNI 62.9

Shi et al. (2017) Multimodal Stacked Net MRI+PET AD,NC, cMCI/MCI ADNI 57.0

Glozman et al.

(2017)

SABS-AD, Transfer-Learning

(ImageNet)

MRI AD, MCI, NC ADNI 83.5

Aderghal et al.

(2018)

CAIM, Transfer-Learning MRI AD, MCI, NC (2-way classification) ADNI 72.91

Li et al. (2018) Transfer-Learning MRI AD,NC ADNI 84

Shi et al. (2017) MMSPN-AD, Transfer-Learning MRI AD,NC, MCI ADNI 75.1

Lin et al. (2018) CNN MRI MCI to AD conversion ADNI 88.79

Xia et al. (2020) 3D CLSTM, CNN MRI AD,NC, MCI ADNI 94.19

Mehmood et al.

(2021)

TLEDA-Net MRI AD, MCI, LMCI, NC 2 way

classification

ADNI 83.64

Naz et al. (2022) Transfer learning (Avg on

Vgg-19)

MRI AD, MCI, NC 2 way classification ADNI 98.12

VGG 19+ALFB

(Ours)

Transfer-Learning

(VGG16+ALFB)

MRI NC, EMCI, LMCI, AD (4-way

classification)

ADNI 98.47

VGG 16+ALFB

(Ours)

Transfer-Learning

(VGG16+ALFB)

MRI NC, EMCI, LMCI, AD (4-way

classification)

ADNI 97.12

TABLE 4 Comparison of the proposed architectures with adding layer

and freezing blocks (ALFB) in VGG16 and VGG-19, with the existing

state-of-the-art architectures in terms of accuracy.

Networks Accuracy Networks Accuracy

DenseNet 92.70 Inception V3 88.33

Inception

ResNetV2

85.82 ResNet101 91.56

AlexNet 89.33 ResNet50 93.98

VGG-19+ALFB

(Ours)

98.47 VGG-16+ALFB

(Ours)

97.12

(Figure 5B) with data augmentation. The comparison of the

accuracy is shown in Table 2 for corresponding confusion

matrices, the data augmentation slightly improves the network

performance.

Similarly, for the VGG 19 model, we show the results

for the training loss and testing accuracy in Figure 6, whereas

the corresponding confusion matrices are shown in Figure 7.

The comparison of the confusion matrices and the accuracy

in Table 2 demonstrate that VGG 19 performs slightly better

than VGG 16. Comparing the confusion matrices for both

networks depicts that the data augmentation slightly improves

the overall performance of the networks during transfer

learning. In Table 2 we present the results for the specificity,

sensitivity, and f1-score for VGG-16 and VGG19 with additional

layers and freezing blocks. It depicts the performance and

overall efficiency of the proposed method. To improve the

robustness and fully-fine tune the model, we propose to

increase the data size with data augmentation. It proved

to be useful because gathering a large-scale dataset in the

target domain is a great challenge. In comparison, the

network-based methods are heavily dependent on large-scale

datasets. The data augmentation improves the data’s size

significantly and resolves the challenges of class imbalance

and over-fitting.
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FIGURE 4

(A) Training loss and (B) test accuracy of the VGG 16 model with additional layer and freezing the block.

FIGURE 5

(A) Confusion matrix without augmentation. (B) Confusion matrix with augmentation for the VGG 16.

FIGURE 6

(A) Training loss and (B) validation (val) accuracy of the VGG 19 model with additional layer and freezing the blocks.
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FIGURE 7

(A) Confusion matrix without data augmentation (DA). (B) Confusion matrix with DA for VGG 19.

6. Conclusion

This study presents a transfer learning-based approach

to diagnose various stages of AD. We intend to automate

the detection of various stages of Alzheimer’s to ease the

burden on the healthcare system. We use the pre-trained VGG

architectures, i.e., VGG 16 and VGG 19, and propose a layer-

wise transfer learning while adding layers and step-wise freezing

the blocks in the pre-trained architecture. We leverage the pre-

trained convolutional base, fine-tune the model for our 4-way

classification on MRI images, and obtain state-of-the-art results

in the target domain. The proposed layer-wise transfer learning

significantly improves the framework’s performance, where we

also resolve the challenges of class imbalance and small data

samples. The comparison with existing methods demonstrates

that the proposed framework is superior in terms of accuracy

and prediction. We achieved an accuracy of 97.89% for the

proposed 4-way classification.
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